Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cardiovasc Res ; 118(2): 461-474, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1510904

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) can lead to multiorgan damage. MicroRNAs (miRNAs) in blood reflect cell activation and tissue injury. We aimed to determine the association of circulating miRNAs with COVID-19 severity and 28 day intensive care unit (ICU) mortality. METHODS AND RESULTS: We performed RNA-Seq in plasma of healthy controls (n = 11), non-severe (n = 18), and severe (n = 18) COVID-19 patients and selected 14 miRNAs according to cell- and tissue origin for measurement by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in a separate cohort of mild (n = 6), moderate (n = 39), and severe (n = 16) patients. Candidates were then measured by RT-qPCR in longitudinal samples of ICU COVID-19 patients (n = 240 samples from n = 65 patients). A total of 60 miRNAs, including platelet-, endothelial-, hepatocyte-, and cardiomyocyte-derived miRNAs, were differentially expressed depending on severity, with increased miR-133a and reduced miR-122 also being associated with 28 day mortality. We leveraged mass spectrometry-based proteomics data for corresponding protein trajectories. Myocyte-derived (myomiR) miR-133a was inversely associated with neutrophil counts and positively with proteins related to neutrophil degranulation, such as myeloperoxidase. In contrast, levels of hepatocyte-derived miR-122 correlated to liver parameters and to liver-derived positive (inverse association) and negative acute phase proteins (positive association). Finally, we compared miRNAs to established markers of COVID-19 severity and outcome, i.e. SARS-CoV-2 RNAemia, age, BMI, D-dimer, and troponin. Whilst RNAemia, age and troponin were better predictors of mortality, miR-133a and miR-122 showed superior classification performance for severity. In binary and triplet combinations, miRNAs improved classification performance of established markers for severity and mortality. CONCLUSION: Circulating miRNAs of different tissue origin, including several known cardiometabolic biomarkers, rise with COVID-19 severity. MyomiR miR-133a and liver-derived miR-122 also relate to 28 day mortality. MiR-133a reflects inflammation-induced myocyte damage, whilst miR-122 reflects the hepatic acute phase response.


Subject(s)
COVID-19/mortality , MicroRNAs/blood , SARS-CoV-2 , Adult , Aged , Biomarkers , COVID-19/complications , COVID-19/genetics , Cardiometabolic Risk Factors , Female , High-Throughput Nucleotide Sequencing , Humans , Intensive Care Units , Male , Middle Aged , Patient Acuity
2.
BMC Infect Dis ; 21(1): 915, 2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1398841

ABSTRACT

BACKGROUND: The aims of this study are to determine (i) SARS-CoV-2 antibody positive employees in Austrian trauma hospitals and rehabilitation facilities, (ii) number of active virus carriers (symptomatic and asymptomatic) during the study, (iii) antibody decline in seropositive subjects over a period of around 6 months, (iv) the usefulness of rapid antibody tests for outpatient screening. METHOD: A total of 3301 employees in 11 Austrian trauma hospitals and rehabilitation facilities of the Austrian Social Insurance for Occupational Risks (AUVA) participated in this open uncontrolled prospective cohort study. Rapid lateral flow tests, detecting a combination of IgM and IgM against SARS-CoV-2), two different types of CLIA (Diasorin, Roche), RT-PCR tests and serum neutralization tests (SNTs) were performed. The tests were conducted twice, with an interval of 42.4 ± 7.7 (Min = 30, Max = 64) days. Positive participants were re-tested with CLIA/SNT at a third time point after 188.0 ± 12.8 days. RESULTS: Only 27 out of 3301 participants (0.82%) had a positive antibody test at any time point during the study confirmed via neutralization test. Among positively tested participants in either test, 50.4% did not report any symptoms consistent with common manifestations of COVID-19 during the study period or within the preceding 6 weeks. In the group who tested positive during or prior to study inclusion the most common symptoms of an acute viral illness were rhinitis (21.9%), and loss of taste and olfactory sense (21.9%). Based on the neutralization test as the true condition, the rapid antibody test performed better on serum than whole blood as 84.6% instead of 65.4% could be detected correctly. Concerning both CLIA tests overall the Roche test detected 24 (sensitivity = 88.9%) and the Diasorin test 22 positive participants (sensitivity = 81.5%). In participants with a positive SNT result, a significant drop in neutralizing antibody titre from 31.8 ± 22.9 (Md = 32.0) at T1 to 26.1 ± 17.6 (Md = 21.3) at T2 to 21.4 ± 13.4 (Md = 16.0) at T3 (χ2 = 23.848, df = 2, p < 0.001) was observed (χ2 = 23.848, df = 2, p < 0.001)-with an average time of 42.4 ± 7.7 days between T1 and T2 and 146.9 ± 13.8 days between T2 and T3. CONCLUSIONS: During the study period (May 11th-August 3rd) only 0.82% were tested positive for antibodies in our study cohort. The antibody concentration decreases significantly over time with 14.8% (4 out of 27) losing detectable antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Asymptomatic Infections , Austria/epidemiology , Humans , Personnel, Hospital , Prospective Studies , Seroepidemiologic Studies
3.
Med Klin Intensivmed Notfmed ; 117(7): 558-567, 2022 Oct.
Article in German | MEDLINE | ID: covidwho-1380415

ABSTRACT

BACKGROUND: The current COVID-19 pandemic, despite the availability of rapid tests and the start of the vaccination campaign, continues to pose major challenges to emergency departments (ED). Structured collection of demographic, clinical, as well as treatment-related data provides the basis for establishing evidence-based processes and treatment concepts. AIM OF THE WORK: To present the systematic collection of clinical parameters in patients with suspected COVID-19 in the Registry for COVID-19 in the Emergency Room (ReCovER) and descriptive presentation of the first 1000 patients. MATERIALS AND METHODS: Data from patients with suspected COVID-19, regardless of evidence of SARS-CoV­2 infection, are continuously entered into a web-based, anonymized registry in ED at six university hospitals. RESULTS: Between 19 May 2020 and 13 January 2021, 1000 patients were entered into the registry, of whom 594 patients (59.4%) were in the SARS-CoV­2 positive group (PG) and 406 patients (40.6%) were in the negative group (NG). Patients of the PG had significantly fewer pre-existing conditions and a significantly longer latency between symptom onset and presentation to the ED (median 5 vs. 3 days), were more likely to suffer from cough, myalgia, fatigue, and loss of smell/taste and had significantly higher oxygen requirements than NG patients. The rate of severe disease progression was significantly higher in the PG, and persistent symptoms were more common after discharge (11.1 vs. 4.6%). CONCLUSIONS: The multicenter collection of comprehensive clinical data on COVID-19 suspected cases in the ED allows analysis of aspects specific to the situation in Germany in particular. This is essential for a targeted review and adaptation of internationally published strategies.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Emergency Service, Hospital , Humans , Oxygen , Registries , SARS-CoV-2
4.
Cardiovasc Res ; 117(8): 1823-1840, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1174897

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been as unprecedented as unexpected, affecting more than 105 million people worldwide as of 8 February 2020 and causing more than 2.3 million deaths according to the World Health Organization (WHO). Not only affecting the lungs but also provoking acute respiratory distress, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is able to infect multiple cell types including cardiac and vascular cells. Hence a significant proportion of infected patients develop cardiac events, such as arrhythmias and heart failure. Patients with cardiovascular comorbidities are at highest risk of cardiac death. To face the pandemic and limit its burden, health authorities have launched several fast-track calls for research projects aiming to develop rapid strategies to combat the disease, as well as longer-term projects to prepare for the future. Biomarkers have the possibility to aid in clinical decision-making and tailoring healthcare in order to improve patient quality of life. The biomarker potential of circulating RNAs has been recognized in several disease conditions, including cardiovascular disease. RNA biomarkers may be useful in the current COVID-19 situation. The discovery, validation, and marketing of novel biomarkers, including RNA biomarkers, require multi-centre studies by large and interdisciplinary collaborative networks, involving both the academia and the industry. Here, members of the EU-CardioRNA COST Action CA17129 summarize the current knowledge about the strain that COVID-19 places on the cardiovascular system and discuss how RNA biomarkers can aid to limit this burden. They present the benefits and challenges of the discovery of novel RNA biomarkers, the need for networking efforts, and the added value of artificial intelligence to achieve reliable advances.


Subject(s)
Artificial Intelligence/economics , Biomarkers/analysis , COVID-19/diagnosis , RNA/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular System/virology , Humans , Quality of Life , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL